- wr

Menoufiya University Faculty of Engineering, Shebin El-Kom Production Engineering and Mechanical Design Department Second Semester Examination,2014-2015

Subject: Materials Handling and Systems Design Code: PRE325 / Year: Third Year Time Allowed : three hours Total Marks : 120 marks Date of Exam : 23 / 5 / 2015

Answer all following six questions [Note: each question has 20 marks] "Assume any required data"

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
 B) Date: The three prescribed coupler (R₃ = AB = 5 cm) point coordinates (x, y) of A and 0₃ positions are as; A₁(2, 4), 0₃₁=307°, A₂(1.55, 5), 0₃₂=310° and A₃(0.0, 6), 0₃₃=325° Req.: Construct 4b planer mechanism by graphical synthesis method in plane {x O₄ y}. Study this mechanism (name , y's, 0₄ and T_R). If (x, y) of the coupler point "P" at the 1st position is P₁(8, 0.0), find (x, y) of P₂ and P₃. What is the generation problem type ? why? Is this mechanism used as hoisting or conveying handling system? why? Is this mechanism used as hoisting or conveying handling system? why? Is this mechanism used as hoisting or conveying handling system? why? Is this mechanism used as hoisting or conveying handling system? why? Is this mechanism used as hoisting or conveying handling system? why? Is this mechanism used as hoisting or conveying handling system? why? Draw the relation between the lifting load Q by fork at c.g.Q and both K₁ and K₂. Consider 0=10°, W_m=12 tons, b=2a=2hq=(4/3)c=4m, µ=0.15. S_m=-20 km/h², y_F=9 m/s² (2.3) [20 marks] A): Date: Inclined conveyor trough (Fig.2) conveys load weight W. Req.: Driving motion (x') which satisfies positive sliding conveying stage. Consider 0=10°, µ=0.15 B): Date: Three flexible hoisting system. Drive n=f(np , s) for each system. Drive n=f(np , s) for each system. Choice the best system! why? 	(Q.1) [20 marks] Define the tasks of the dimensional synthesis.	
0_3 positions are as: $A_1(2, 4)$, $0_{31}=307^\circ$, $A_2(1.55, 5)$, $0_{32}=310^\circ$ and $A_3(0.0, 6)$, $0_{33}=325^\circ$ Req.:1) Construct 4b planer mechanism by graphical synthesis method in plane { $x O_4 y$ }.2) Study this mechanism (name, γ 's, ϕ_4 and T_8).3) If (x, y) of the coupler point "P" at the 1 st position is $P_1(8, 0.0)$, find (x, y) of P_2 and P_3 4) What is the generation problem type ? why?5) Is this mechanism used as hoisting or conveying handling system? why?(Q.2)Date:(Q.2)Date:A fork-lift truck shown if Fig.1 Req.:Req.:1) Show all forces acting on the system due to motions of machine "m" and fork "F"2) Draw the relation between the lifting load Q by fork at c.g.q and both K ₁ and K ₂ . Consider o=10°, $W_m=12$ tons, b=2a=2h_a=(4/3)c=4n, $W_m=12$ tons, b=2a=2h_a=(4/3)c=4n, 	A) Define the tasks of the dimensional synthesis (x, y) of A and (x, y) and (x, y) of A and (x, y) of A and (x, y) and	and
$A_{1}(2, 4) , \theta_{31}=307^{\circ}, A_{2}(1.55, 5), \theta_{32}=310^{\circ} \text{ and } A_{3}(0.0, 6), \theta_{33}=325^{\circ}$ $\frac{\text{Req.:}}{1}$ 1) Construct 4b planer mechanism by graphical synthesis method in plane { x O_{4} y }. 2) Study this mechanism (name, γ 's, ϕ_{4} and T_{R}). 3) If (x, y) of the coupler point "P" at the 1 st position is $P_{1}(8, 0.0)$, find (x, y) of P_{2} and P_{3} 4) What is the generation problem type ? why? 5) Is this mechanism used as hoisting or conveying handling system? why? (Q.2) <u>Date:</u> A fork-lift truck shown if <i>Fig.1</i> <u>Req.:</u> 1) Show all forces acting on the system due to motions of machine "m" and fork "F" 2) Draw the relation between the lifting load Q by fork at c.g.Q and both K ₁ and K ₂ . Consider $0=10^{\circ}$, W _m =12 tons, $b=2a=2h_{1}=(4)(3)(s=4m, \mu=0.15, X_{m}=-20 \text{ km/h}^{2}, \overline{y}_{F}=-9 \text{ m/s}^{2}$ 2.3) [20 marks] A): <u>Date:</u> Inclined conveyor trough (<i>Fig.2</i>) conveys load weight W. <u>Req.:</u> Driving motion (\vec{x}) which satisfies positive sliding conveying stage. Consider $0=10^{\circ}$, $\mu=0.15$ B): <u>Date:</u> Three flexible hoisting systems. (<i>Fig.3</i>) <u>Req.:</u> 1) Illustrate the type of motions of each pulley. 2) Drive $\eta=f(n_{p}, \epsilon)$ for each system. 3) Find Q and h if $F_{p}=100N$ and s=4m for each system. 4) Choice the best system! why? b the satisfies opsitem! why? c the set system! why? c the set system! why? c the set system! why?		
Req.:1) Construct 4b planer mechanism by graphical synthesis method in plane { $x O_4 y$ }.2) Study this mechanism (name, γ 's, ϕ_4 and T_R).3) If (x , y) of the coupler point "P" at the 1st position is $P_1(8, 0.0)$, find (x , y) of P_2 and P_3 .4) What is the generation problem type ? why?5) Is this mechanism used as hoisting or conveying handling system? why?(Q.2) [20 marks]Date: A fork-lift truck shown if $Fig.1$ Req.: 1) Show all forces acting on the system due to motions of machine "m" and fork "F"2) Draw the relation between the lifting load Q by fork at c.g.q and both K, and K_s. Consider $o=10^{\circ}$, $W_m=12$ tons, $b=2a=2h_q=(4/3)c=4m$, $\mu=0.15$, $\vec{x}_m=-20$ km/h ² , $\vec{y}_F=-9$ m/s ² (2.3) [20 marks]A): Date: Inclined conveyor trough ($Fig.2$) conveys load weight W.Req.:B): Date: Three flexible hoisting systems ($Fig.3$)Req.:1) Illustrate the type of motions of each pulley.2) Drive $\eta = f(n_p, \epsilon)$ for each system.3) Find Q and h if $F_p=100N$ and s=4m for each system.4) Choice the best system! why?	$A_{1}(2, 4) = 0$ $A_{2}(1.55, 5) = 0$ $A_{3}(0.0, 6) = 0$ $A_{3}(0.0, 6)$	
 1) Construct 4b planer mechanism by graphical synthesis method in plane {x O₄y}. 2) Study this mechanism (name, γ's, φ₄ and T_R). 3) If (x, y) of the coupler point "P" at the 1" position is P₁(8, 0.0), find (x, y) of P₂ and P₃. 4) What is the generation problem type ? why? 5) Is this mechanism used as hoisting or conveying handling system? why? (Q.2) Date: A fork-lift truck shown if Fig.1 Req.: 1) Show all forces acting on the system due to motions of machine "m" and fork "F" 2) Draw the relation between the lifting load Q by fork at c.g.q and both K, and K, . Consider 0=10°, Wm=12 tons, b=2a=2h_q=(4/3)c=4m, µ=0.15, x_m=-20 km/h², y_F=9 m/s² (2.3) [20 marks] A): Date: Inclined conveyor trough (Fig.2) conveys load weight W. Req.: Driving motion (x') which satisfies positive sliding conveying stage. Consider 0=10°, µ=0.15 B): Date: Three flexible hoisting systems (Fig.3) Reqa: 1) Illustrate the type of motions of each pulley. 2) Drive η=f(n_p, c) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 	Reg	
 2) Study this mechanism (name, y's, \$\u03c9, \$\u03c9 and \$\mathbf{T}_1\$). 3) If (x, y) of the coupler point "P" at the 1st position is P₁(8, 0.0), find (x, y) of P₂ and P₃ 4) What is the generation problem type ? why? 5) Is this mechanism used as hoisting or conveying handling system? why? (Q.2) [20 marks] 2) Draw the relation between the lifting load Q by fork at c.g.Q and both K, and K, . Consider o=10°, Wm=12 tons, b=2a=2h_a=(4/3)c=4m, µ=0.15, \$\vec x_m=-20 km/h^2, \$\vec y_{F}=-9 m/s^2\$ (P.3) A: Date: Inclined conveyor trough (<i>Fig.2</i>) conveys load weight W. Req.: Driving motion (\$\vec x\$) which satisfies positive sliding conveying stage. Consider o=10°, µ=0.15 B): Date: Three flexible hoisting systems (<i>Fig.3</i>) (Page: 1) Illustrate the type of motions of each pulley. 2) Drive η=f(n_p, z) for each system. 4) Choice the best system! why? 	1) Construct 4b planer mechanism by graphical synthesis method in plane { $x O_4 y$	}.
 3) If (x, y) of the coupler point "P" at the 1" position is P₁(8, 0.0), find (x, y) of P₂ and P₃ 4) What is the generation problem type ? why? 5) Is this mechanism used as hoisting or conveying handling system? why? (Q.2) [20 marks] 2) Draw the relation between the lifting load Q by fork at c.g. Q and both K₁ and K₅. Consider 0=10°, Wm=12 tons, b=2a=2h_q=(4/3)c=4m, µ=0.15, x_m[*]=-20 km/h², y_F=-9 m/s² (20 marks] A): Date: Inclined conveyor trough (Fig.2) conveys load weight W. Req.: Driving motion (x[*]) which satisfies positive sliding conveying stage. Consider 0=10°, µ=0.15 B): Date: Three flexible hoisting systems (Fig.3) Req.: 1) Illustrate the type of motions of each pulley. 2) Drive n=f(n_p, ε) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 	2) Study this mechanism (name v's, ϕ_i and T _P).	
 4) What is the generation problem type ? why? 5) Is this mechanism used as hoisting or conveying handling system? why? (Q.2) [20 marks] (Q.2) Date: A fork-lift truck shown if Fig.1 Req.: 2) Draw the relation between the lifting load Q by fork at c.g.Q and both K, and K_s. Consider θ=10°, W_m=12 tons, b=2a=2hq=(4/3)c=4m, µ=0.15, X_m=-20 km/h², y_p=-9 m/s² (Q.2) Draw the relation between the lifting load Q by fork at c.g.Q and both K, and K_s. Consider θ=10°, W_m=12 tons, b=2a=2hq=(4/3)c=4m, µ=0.15, X_m=-20 km/h², y_p=-9 m/s² (Q.2) Prough Fig.2 (Q.2) Draw the relation between the lifting load Q by fork at c.g.Q and both K, and K_s. Consider θ=10°, Fig.2 (Q.3) [20 marks] A): Date: Inclined conveyor trough (Fig.2) conveys load weight W. Req.: (D.3) Pate: Three flexible hoisting systems (Fig.3) (Fig.2) Drive η=f (n_p , ε) for each system. (P.3) Find Q and h if F_p=100N and s=4m for each system. (P.1) Choice the best system! why? 	3) If (x, y) of the coupler point "P" at the 1 st position is P ₁ (8, 0.0), find (x, y) o	\mathbf{P}_2
 5) Is this mechanism used as hoisting or conveying handling system? Why? (Q.2) [20 marks] <u>Req.</u>: 1) Show all forces acting on the system due to motions of machine "m" and fork "F" 2) Draw the relation between the lifting load Q by fork at c.g.q and both K₁ and K₂. Consider o=10°, Wm=12 tons, b=2a=2hq=(4/3)c=4m, µ=0.15, Xm==-20 km/h², Yp==9 m/s² (Q.2) [20 marks] A): <u>Date</u>: Inclined conveyor trough (<i>Fig.2</i>) conveys load weight W. <u>Req.</u>: Driving motion (x') which satisfies positive sliding conveying stage. Consider o=10°, µ=0.15 B): <u>Date</u>: Three flexible hoisting systems (<i>Fig.3</i>) <u>Req.</u>: 1) Illustrate the type of motions of each pulley. 2) Drive η=f (np, . ɛ) for each system. 3) Find Q and h if Fp=100N and s=4m for each system. 4) Choice the best system! why? 	and P ₃	24
 (Q.2) [20 marks] <u>Date:</u> A fork-lift truck shown if Fig.1 <u>Req.</u>: 1) Show all forces acting on the system due to motions of machine "m" and fork "F" 2) Draw the relation between the lifting load Q by fork at c.g.Q and both K, and K, . Consider 0=10°, W_m=12 tons, b=2a=2h_q=(4/3)c=4m, µ=0.15, x_m=-20 km/h², y_F=-9 m/s² 7.3 [20 marks] A): <u>Date:</u> Inclined conveyor trough (Fig.2) conveys load weight W. <u>Req.:</u> Driving motion (x') which satisfies positive sliding conveying stage. Consider 0=10°, µ=0.15 B): <u>Date:</u> Three flexible hoisting systems (Fig.3) <u>Req.:</u> 1) Illustrate the type of motions of each pulley. 2) Drive η=f(n_p, ε) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? A: A: Date: Hole ach system. A: Consider 0=10°, µ=0.15 B: Date: Three flexible hoisting system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? A: Consider 0=10°, µ=0.15 B: Date: Three flexible hoisting system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? A: Date: Three flexible hoisting system. 4: Consider 0=10°, µ=0.15 B: Consider 0=10°,	4) What is the generation problem type ? why?	
 Date: A fork-lift truck shown if Fig.1 Req.: 1) Show all forces acting on the system due to motions of machine "m" and fork "F" 2) Draw the relation between the lifting load Q by fork at c.g.Q and both K_t and K_s. Consider o=10°, W_m=12 tons, b=2a=2hq=(4/3)c=4m, µ=0.15, X_m=-20 km/h², Y_F=-9 m/s² 7.3 (20 marks] A): Date: Inclined conveyor trough (Fig.2) conveys load weight W. Req:: Driving motion (X) which satisfies positive sliding conveying stage. Consider o=10°, µ=0.15 B): Date: Three flexible hoisting systems (Fig.3) Req:: 1) Illustrate the type of motions of each pulley. 2) Drive q=f(n_p, z) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 	5) Is this mechanism used as hoisting or conveying nanoning system. why	
 Req.: 1) Show all forces acting on the system due to motions of machine "m" and fork "F" 2) Draw the relation between the lifting load Q by fork at c.g.Q and both K, and K, Consider 0=10°, Wm=12 tons, b=2a=2h_a=(4/3)e=4m, µ=0.15, xm = -20 km/h², yr =-9 m/s² 7.3) [20 marks] A): Date: Inclined conveyor trough (Fig.2) conveys load weight W. Req.: Driving motion (x') which satisfies positive sliding conveying stage. Consider 0=10°, µ=0.15 B): Date: Three flexible hoisting systems (Fig.3) Req.: 1) Illustrate the type of motions of each pulley. 2) Drive η=f (np, , ε) for each system. 3) Find Q and h if Fp=100N and s=4m for each system. 4) Choice the best system! why? 	$(Q.2) \qquad [20 \text{ marks}] \qquad \qquad$	
system due to motions of machine "m" and fork "F" 2) Draw the relation between the lifting load Q by fork at e.g.Q and both K ₁ and K ₅ . Consider $0=10^{\circ}$, $W_m=12$ tons, $b=2a=2h_q=(4/3)c=4m$, $\mu=0.15$, $\vec{x}_m=-20$ km/h ² , $\vec{y}_F=-9$ m/s ² 2.3) A): <u>Date:</u> Inclined conveyor trough (<i>Fig.2</i>) conveys load weight W. <u>Req.:</u> Driving motion (\vec{x}) which satisfies positive sliding conveying stage. Consider $0=10^{\circ}$, $\mu=0.15$ B): <u>Date:</u> Three flexible hoisting systems (<i>Fig.3</i>) <u>Req.:</u> 1) Illustrate the type of motions of each pulley. 2) Drive $\eta=f(n_p, \epsilon)$ for each system. 3) Find Q and h if $F_p=100N$ and s=4m for each system. 4) Choice the best system! why?	Date: A fork-fift truck shown in Fig.1	V
 "m" and fork "F" 2) Draw the relation between the lifting load Q by fork at c.g.Q and both K₁ and K₅. Consider 0=10°, W_m=12 tons, b=2a=2h_q=(4/3)c=4m, µ=0.15, x_m=-20 km/h², y_F=-9 m/s² 7.3 (20 marks] A): Date: Inclined conveyor trough (<i>Fig.2</i>) conveys load weight W. Req.: Driving motion (x') which satisfies positive sliding conveying stage. Consider 0=10°, µ=0.15 B): Date: Three flexible hoisting systems (<i>Fig.3</i>) Req.: 1) Illustrate the type of motions of each pulley. 2) Drive η=f(n_p, ε) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 	system due to motions of machine	A .
 2) Draw the relation between the lifting load Q by fork at c.g.q and both K_i and K_s. Consider 0=10°, W_m=12 tons, b=2a=2h_q=(4/3)c=4m, µ=0.15, x_m[±]=-20 km/h², y_F=-9 m/s² 2.3) [20 marks] A): Date: Inclined conveyor trough (Fig.2) conveys load weight W. Req.: Driving motion (x') which satisfies positive sliding conveying stage. Consider 0=10°, µ=0.15 B): Date: Three flexible hoisting systems (Fig.3) Req.: 1) Illustrate the type of motions of each pulley. 2) Drive η=f(n_p, ε) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 	"m" and fork "F"	
lifting load Q by fork at c.g.q and both K _t and K _s . Consider $\Theta = 10^{\circ}$, $W_m = 12$ tons, $b = 2a = 2h_q = (4/3)c = 4m$, $\mu = 0.15$, $\ddot{x}_m = -20$ km/h ² , $\ddot{y}_F = -9$ m/s ² 7.3) [20 marks] A): Date: Inclined conveyor trough (Fig.2) conveys load weight W. Req.: Driving motion (\dot{x}) which satisfies positive sliding conveying stage. Consider $\Theta = 10^{\circ}$, $\mu = 0.15$ B): Date: Three flexible hoisting systems (Fig.3) <u>Req.:</u> 1) Illustrate the type of motions of each pulley. 2) Drive $\eta = f(n_p, \epsilon)$ for each system. 3) Find Q and h if $F_p = 100N$ and s=4m for each system. 4) Choice the best system! why?	2) Draw the relation between the	
both K _t and K _s . Consider $o=10^{\circ}$, $W_m=12$ tons, $b=2a=2h_q=(4/3)c=4m$, $\mu=0.15$, $\vec{x}_m=-20$ km/h ² , $\vec{y}_F=-9$ m/s ² Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig.t Pig		
$W_{m}=12 \text{ tons, } b=2a=2h_{q}=(4/3)c=4m,$ $\mu=0.15, \tilde{x}_{m}=-20 \text{ km/h}^{2}, \tilde{y}_{F}=-9 \text{ m/s}^{2}$ $Fig.1$ $Fig.1$ $Fig.1$ $Fig.1$ $Fig.2$ $Fig.3$ $Fig.2$ $Fig.3$ $Fig.2$ $Fig.3$ $Fig.2$ $Fig.3$ $Fig.2$ $Fig.3$ $Fig.3$ $Fig.3$ $Fig.3$ $Fig.3$ $Fig.3$ $Fig.3$ $Fig.3$	both K, and K, Consider $\theta = 10^{\circ}$,	
 μ=0.15, x_m² = -20 km/h², y_F = -9 m/s² 2.3) [20 marks] A): Date: Inclined conveyor trough (Fig.2) conveys load weight W. Req.: Driving motion (x) which satisfies positive sliding conveying stage. Consider 0=10°, μ=0.15 B): Date: Three flexible hoisting systems (Fig.3) Req.: 1) Illustrate the type of motions of each pulley. 2) Drive η=f (n_p, ε) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 	$W_m = 12 \text{ tons, } b = 2a = 2h_a = (4/3)c = 4m,$	
 A): Date: Inclined conveyor trough (Fig.2) conveys load weight W. Req.: Driving motion (x') which satisfies positive sliding conveying stage. Consider θ=10°, μ=0.15 B): Date: Three flexible hoisting systems (Fig.3) Req.: I) Illustrate the type of motions of each pulley. Drive η=f(n_p, ε) for each system. Find Q and h if F_p=100N and s=4m for each system. Choice the best system! why? 	$\mu = 0.15, \ \ddot{x}_{m} = -20 \ \text{km/h}^{2}, \ \ddot{y}_{F} = -9 \ \text{m/s}^{2}$	
 A): Date: Inclined conveyor trough (Fig.2) conveys load weight W. Req.: Driving motion (x') which satisfies positive sliding conveying stage. Consider θ=10°, μ=0.15 B): Date: Three flexible hoisting systems (Fig.3) Req.: I) Illustrate the type of motions of each pulley. Drive η=f(n_p, ε) for each system. Find Q and h if F_p=100N and s=4m for each system. Choice the best system! why? 	(20 marks)	
 (Fig.2) conveys toda weight W. Req.: Driving motion (x) which satisfies positive sliding conveying stage. Consider θ=10°, μ=0.15 B): Date: Three flexible hoisting systems (Fig.3) Req.: 1) Illustrate the type of motions of each pulley. 2) Drive η=f (n_p, ε) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 	A): Date: Inclined conveyor trough	
 <u>Req.:</u> Driving motion (x') which satisfies positive sliding conveying stage. Consider θ=10°, μ=0.15 B): <u>Date:</u> Three flexible hoisting systems (Fig.3) <u>Req.:</u> I) Illustrate the type of motions of each pulley. Drive η=f (n_p, ε) for each system. Find Q and h if F_p=100N and s=4m for each system. Choice the best system! why? 	(Fig.2) conveys load weight	ż.
 satisfies positive sliding conveying stage. Consider θ=10°, μ=0.15 B): Date: Three flexible hoisting systems (Fig.3) Req.: I) Illustrate the type of motions of each pulley. Drive η=f (n_p, ε) for each system. Find Q and h if F_p=100N and s=4m for each system. Choice the best system! why? 	W.	
 conveying stage. Consider θ=10°, μ=0.15 B): Date: Three flexible hoisting systems (Fig.3) Req.: 1) Illustrate the type of motions of each pulley. 2) Drive η=f (n_p, ε) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 	<u>Req.</u> : Driving motion (x) which active sliding	
Consider $\theta = 10^{\circ}$, $\mu = 0.15$ B): Date: Three flexible hoisting systems (Fig.3) Req.: 1) Illustrate the type of motions of each pulley. 2) Drive $\eta = f(n_p, \varepsilon)$ for each system. 3) Find Q and h if $F_p = 100N$ and s = 4m for each system. 4) Choice the best system! why?	conversion stage	
 B): Date: Three flexible hoisting systems (Fig.3) <u>Req.:</u> 1) Illustrate the type of motions of each pulley. 2) Drive η=f (n_p, ε) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 	F19.4	
 systems (Fig.3) Req.: Illustrate the type of motions of each pulley. Drive η=f (n_p, ε) for each system. F_p.s 		= n, =3
 Req.: 1) Illustrate the type of motions of each pulley. 2) Drive η=f (n_p, ε) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 		
 of each pulley. 2) Drive η=f (n_p, ε) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 		
 2) Drive η=f (n_p, ε) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 		
 2) Drive η=f (h_p, ε) for each system. 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 		
 3) Find Q and h if F_p=100N and s=4m for each system. 4) Choice the best system! why? 	2) Drive $\eta = j(n_p, \varepsilon)$ for each (1)	9
 s=4m for each system. 4) Choice the best system! why? 4) Fig.3 		F, s
4) Choice the best system! why? <i>Fig.3</i>		

- 1) For piston, drive the equation $X = f(\Theta, R, L)$ and its linear speed $\dot{X} = f(\omega, \Theta, R, \text{etc})$ and its acceleration $\ddot{X} = f(\alpha, \omega^2, \Theta, ... \text{etc})$
- 2) At θ =53.13°, R=30cm, L=40 cm, constant ω =1 r/s and F=500N, find <u>analytically</u> the values (X, \dot{X}, \dot{X}) "and check these values graphically". Try to find torque (T) which must applied to OA if mass m_2 =10Kg of OA concentrated at mid of OA and mass m_p =50Kg of piston block concentrated at B, assume link AB is massless m_{AB} =0, friction coefficient μ =0.1 of piston and ground

With my best wishes (DR/ Khaled Khader)

This	exam contr	ributes "by m	easuring" in achi	eving Programme Acad	lemic Standards acco	rding to NARS	
Question Number	Q1-a	Q4-a	Q5-a, Q6-a	Q1-b, Q2, Q5-b	Q3-b, Q4-b	Q3-a	Q5-b, Q6-b
CL:II-	a3-1	a16-1	a16-2	b12-1	b13-1	c5-1	c6-1
Skills	Knowledge & Understanding Skills			Intellectual Skills		Professional Skills	